【源码】ReentrantLock
java.util.concurrent.locks.ReentrantLock
package java.util.concurrent.locks;
import java.util.concurrent.TimeUnit;
import java.util.Collection;
/**
*
* @since 1.5
* @author Doug Lea //对大神的敬畏
*/
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
private final Sync sync;//定义了一个Sync对象
//锁的父类,lock在子类中实现
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
abstract void lock();
//尝试获取非公平锁
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();//获取当前锁的状态
if (c == 0) {//状态0代表锁处于空闲状态,通过CAS修改状态为1(获取锁).
if (compareAndSetState(0, acquires)) {
//设置获取到排他锁是当前线程
setExclusiveOwnerThread(current);
return true;
}
}
//如果当前线程是已经拿到锁的线程,那么可以重入,将状态+1.
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;//尝试失败
}
//释放锁
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {//因为可重入,所以要检查状态是否为0。
free = true;
//在0的时候清掉当前排他锁状态
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
//当前线程是不是占有排他锁
protected final boolean isHeldExclusively() {
return getExclusiveOwnerThread() == Thread.currentThread();
}
//获取ConditionObject对象
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
//当前线程是不是排他锁拥有者
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
final boolean isLocked() {
return getState() != 0;
}
/**
* Reconstitutes the instance from a stream (that is, deserializes it).
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
/**
* Performs lock. Try immediate barge, backing up to normal
* acquire on failure.
*/
final void lock() {
//AbstractQueuedSynchronizer中的方法,原子操作更改锁的状态。
if (compareAndSetState(0, 1))
//设置占用排他锁的是当前线程
setExclusiveOwnerThread(Thread.currentThread());
else
//没有抢到锁后进入acquire方法,此方法是在AQS中实现的,方法代码放在了下面。
acquire(1);
}
//尝试获取锁
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
final void lock() {
//公平锁不会马上去申请锁的权限,而是调用acquire()方法排队
acquire(1);
}
/**
* Fair version of tryAcquire. Don't grant access unless
* recursive call or no waiters or is first.
*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//判断是否排到了自己,是的话获取锁
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//这部分和非公平锁一样
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
//默认非公平锁
public ReentrantLock() {
sync = new NonfairSync();
}
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
//获取锁
public void lock() {
sync.lock();
}
//中断锁的获取
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
//尝试获取非公平锁
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
//在时间内尝试获取锁,在达到时间时未获得,停止获取锁。
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
//释放锁
public void unlock() {
sync.release(1);
}
public Condition newCondition() {
return sync.newCondition();
}
public int getHoldCount() {
return sync.getHoldCount();
}
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
public boolean isLocked() {
return sync.isLocked();
}
public final boolean isFair() {
return sync instanceof FairSync;
}
protected Thread getOwner() {
return sync.getOwner();
}
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
public final int getQueueLength() {
return sync.getQueueLength();
}
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
ted Collection<Thread> getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
}
以上就是ReentrantLock的源码,根据源码可以了解到,ReentrantLock是如何重入的。
涉及到的AQS方法
public final void acquire(int arg) {
//tryAcquire方法是子类重写的,公平锁和非公平锁实现不一样,见上面的代码
if (!tryAcquire(arg) &&
//新生成一个Node进行排队
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
//在队列尾部添加一个Node
private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
//自旋获取锁
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
//检查排队进度
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
栗子
package com.yaochow.demo;
import org.junit.Test;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class ReentrantLockTest {
@Test
public void testReentrantLock() throws InterruptedException {
ReentrantLockDemo reentrantLockDemo = new ReentrantLockDemo();
new Thread(() -> reentrantLockDemo.minusOne("bird", 3)).start();
new Thread(() -> reentrantLockDemo.minusOne("monkey", 2)).start();
new Thread(() -> new ReentrantLockDemo().minusOne("lion", 1)).start();
Thread.sleep(1000);
}
}
class ReentrantLockDemo {
private static int num = 3;//定义类变量
private static Lock lock = new ReentrantLock();//锁
public void minusOne(String name, int want) {
lock.lock();
System.out.println(String.format("%s got lock", name));
try {
if (num - 1 < 0 || want == 0) return;
num--;
System.out.println(String.format("%s execute, num: %d", name, num));
minusOne(name, --want);
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
} finally {
System.out.println(String.format("%s unlock", name));
lock.unlock();
}
}
}
运行结果:
bird got lock
bird execute, num: 2
bird got lock
bird execute, num: 1
bird got lock
bird execute, num: 0
bird got lock
bird unlock
bird unlock
bird unlock
bird unlock
monkey got lock
monkey unlock
lion got lock
lion unlock
可以看到,当bird拿到锁后当前线程可以再次获取锁,而monkey和lion需要等锁拥有者释放掉锁后才能够获取到锁,这就是可重入的概念。
总结
- ReentrantLock是可重入锁。
- 分为公平锁和非公平锁,公平锁在新线程获取锁的时候会直接进行排队;而非公平锁会直接获取锁,失败后才会进行排队。
J.U.C中最核心的就是AQS和CAS,基本上都是围绕着这两部分。
以上源码均来自JDK1.8.0_171